


Objectives
• Describe defensive design considerations:

• Input validation

• Anticipating misuse

• Authentication

• Understand how to make maintainable programs 
including:

• The use of sub programs

• Naming conventions

• Indentation

• Commenting



Defensive design

Unit 8 Logic and languages

Starter
• When a program requires input from 

a user, it needs to ensure that no 
errors occur as a result

• What is an example where a user could 
enter data to a program that 
causes it to crash?



Defensive design

Unit 8 Logic and languages

Starter
• What is an example where a user could enter 

data to a program that causes it to crash?

age = input("Please enter your age: ")
age = age + 1

Results in a crash as an input is a string and it is trying to do 
a calculation with it



Defensive design

Unit 8 Logic and languages

Data validation
• Data validation routines can ensure that data 

entered is of the right type – for example, an integer 

• Validation cannot ensure that the user has not entered a 
wrong value, or made a spelling mistake in a name

• It can only ensure that the data is reasonable and conforms to 
a set of rules

• What other validation checks could you apply to data 
entered by the user?



Defensive design

Unit 8 Logic and languages

Types of validation check
Check Example

Range check
A number or date is within a sensible/allowed 
range

Type check
Data is of the right type, such as integer, letter
or text

Length check
Text entered is not too long or too short – for 
example, a password is between 8 and 15 
characters

Presence check
Checks that data has been entered, i.e. the 
field has not been left blank

Format check
Checks that the format of, for example, a 
postcode or email address is correct



Defensive design

Unit 8 Logic and languages

Example
• What sort of validation check is made in this algorithm?

postcode = input("Please enter postcode:")
if postcode.length < 6 OR 

postcode.length > 8 then
print("Invalid postcode")

endif

• Rewrite the algorithm so that the program keeps 
asking the user to enter a postcode until the 
entry is valid



Defensive design

Unit 8 Logic and languages

Solution
• You need a WHILE or a REPEAT loop

postcode = input("Please enter postcode:")
while postcode.length < 6 OR 

postcode.length > 8
postcode = input("Invalid postcode –

please re-enter")
endwhile

• How many times will the loop be performed if the 
user enters IP6 4DF?



Defensive design

Unit 8 Logic and languages

Verification
• Validation can only check that the data entered 

is reasonable

• Verification is used to double-check that the data has 
been typed in correctly

• For example, a user setting a new password may be 
asked to type it in twice

• If the two passwords don’t match, they will be asked to enter 
the password again

• This is known as double-entry verification



Defensive design

Unit 8 Logic and languages

Worksheet 2
• Now complete Task 1 on Worksheet 2



Defensive design

Unit 8 Logic and languages

Authentication routines
• Authentication routines are used to make sure a 

person is who they claim to be

• What is a common method 
of online authentication, for 
example when you log in to 
a website with which you 
have previously registered?



Defensive design

Unit 8 Logic and languages

Password routines
• Commonly, you are asked to enter a User ID 

and a password

• Once you have entered the User ID, the website looks 
up your password in a database

• If the user ID cannot be found, an error 
message is displayed

• What happens if you enter the wrong password?



Defensive design

Unit 8 Logic and languages

Entering a password
• You usually get three attempts to get your password, 

and then you will be locked out



Defensive design

Unit 8 Logic and languages

Anticipating misuse
• Why are you often only allowed a finite number of 

tries before being locked out?



Defensive design

Unit 8 Logic and languages

Three tries and you’re out!
• It may be that you have forgotten your password, 

and you need to be given a reminder, so three tries 
is enough for the average user

• BUT a hacker may be trying out dozens of likely 
passwords to try and get the correct one

• There are software programs which will try out every 
combination of letters, numbers and special characters – this 
is known as a brute-force attack

• Use a password of 8 characters or more to make it more 
difficult to hack!



Defensive design

Unit 8 Logic and languages

Worksheet 2
• Now complete Task 2 on Worksheet 2



Defensive design

Unit 8 Logic and languages

Maintainable programs
• Programs need to be maintained

• This will be to improve the code, fix bugs or add new features 
to the program

• It may be carried out by the original programmer or different 
programmers

• It is important that programs are written in a way to 
make them easily maintainable. This includes:

• The use of sub programs (functions and procedures)

• Using appropriate naming conventions

• Indentation

• Commenting



Defensive design

Unit 8 Logic and languages

Using sub programs
• Sub programs include functions and procedures

• Well written sub programs will take inputs (through 
parameters) and if necessary return a value

• They should be written so that they can be reused multiple 
times in the program or by other programs

• The two programs below are for a function that works out the 
area of a circle. Which is more easy to reuse and will help 
create maintainable code?

function circle(radius)
area = 3.14 * radius^2

return area

function circleFive()
area = 3.14 * 5^2

return area



Defensive design

Unit 8 Logic and languages

Using sub programs
• The program on the left takes any sized radius as 

an input

• This means that it is reusable many times in the program and 
in other programs

• This will make a larger program easier to maintain as there 
will be just one function to calculate the area of a circle

function circle(radius)
area = 3.14 * radius^2

return area

function circleFive()
area = 3.14 * 5^2

return area





Defensive design

Unit 8 Logic and languages

Naming conventions
• The two programs below are the same algorithm

• Which is easier to understand? Why?

a = float(input())
b = float(input())
c = float(input())
d = a + b + c
e = d / 3
print(e)

num1 = float(input())
num2 = float(input())
num3 = float(input())
total = num1 + num2 + num3
average = total / 3
print(average)



Defensive design

Unit 8 Logic and languages

Naming conventions
• The two programs below are the same algorithm

• Which is easier to understand? Why?

• It is important to use meaningful names for 
variables, constants, functions and procedures

• This makes code easier to read and understand

a = float(input())
b = float(input())
c = float(input())
d = a + b + c
e = d / 3
print(e)

num1 = float(input())
num2 = float(input())
num3 = float(input())
total = num1 + num2 + num3
average = total / 3
print(average) 



Defensive design

Unit 8 Logic and languages

Indentation
• Look at the following pseudocode:

tables = 12
rows = 12
for i = 1 to tables
for j = 1 to rows
answer = i * j
next j
next i
print(str(i) + "x" + str(j) + " = " + str(answer))

• Why would the use of indentation improve it?

• Why may indentation be essential in some languages?



Defensive design

Unit 8 Logic and languages

Indentation
tables = 12
rows = 12
for i = 1 to tables

for j = 1 to rows
answer = i * j

next j
next i
print(str(i) + "x" + str(j) + " = " + str(answer))

• Why would the use of indentation improve it?
• Indentation makes it possible to easily see which lines of 

code are part of different structures

• Why may indentation be essential in 
some languages?
• Some languages use braces { } to show where structures 

start and end, but some, such as Python use indentation



Defensive design

Unit 8 Logic and languages

Commenting
• Comments in code help other programmers to 

understand your code

• They also help you understand your code when you go back 
to it at a later time

• Which parts of programming code tend to 
be commented?

• Which parts are typically not commented?



Defensive design

Unit 8 Logic and languages

Commenting
• Comments are usually written for:

• Parts of a program/algorithm that are difficult to understand

• At the start of a function or procedure to explain what it does

• Comments usually aren’t written for:

• Every line of code

• To explain parts of code that are obvious

• To explain syntax used in the programming language –
programmers are expected to look up and learn parts of the 
language that they don’t understand



Defensive design

Unit 8 Logic and languages

Plenary
• Work in pairs to explain the following terms and how 

they can improve the design of programs

• Input validation

• Anticipating misuse

• Authentication

• Use of sub programs

• Naming conventions

• Indentation

• Commenting



Defensive design

Unit 8 Logic and languages

Plenary
• Input validation – checking input meets certain rules, e.g. the 

type of data

• Anticipating misuse – preventing too many entries of a 
password to make it harder for hackers to guess

• Authentication – entering data twice or checking from an 
alternative source

• Use of sub programs – creates reusable code where bugs 
can easily be fixed

• Naming conventions – good use of variables and sub 
program names makes programs easier to read

• Indentation – makes programs easier to read

• Commenting – helps programmers understand what a 
program does and how it does it



Copyright

© 2020 PG Online Limited

The contents of this unit are protected by copyright.

This unit and all the worksheets, PowerPoint presentations, teaching guides and other associated files distributed
with it are supplied to you by PG Online Limited under licence and may be used and copied by you only in
accordance with the terms of the licence. Except as expressly permitted by the licence, no part of the materials
distributed with this unit may be used, reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic or otherwise, without the prior written permission of PG Online Limited.

Licence agreement

This is a legal agreement between you, the end user, and PG Online Limited. This unit and all the worksheets,
PowerPoint presentations, teaching guides and other associated files distributed with it is licensed, not sold, to
you by PG Online Limited for use under the terms of the licence.

The materials distributed with this unit may be freely copied and used by members of a single institution on a
single site only. You are not permitted to share in any way any of the materials or part of the materials with any
third party, including users on another site or individuals who are members of a separate institution. You
acknowledge that the materials must remain with you, the licencing institution, and no part of the materials may
be transferred to another institution. You also agree not to procure, authorise, encourage, facilitate or enable any
third party to reproduce these materials in whole or in part without the prior permission of PG Online Limited.

Defensive design

Unit 8 Logic and languages


