


Objectives
• Describe defensive design considerations:

• Input validation

• Anticipating misuse

• Authentication

• Understand how to make maintainable programs 
including:

• The use of sub programs

• Naming conventions

• Indentation

• Commenting
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Starter
• When a program requires input from 

a user, it needs to ensure that no 
errors occur as a result

• What is an example where a user could 
enter data to a program that 
causes it to crash?
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Starter
• What is an example where a user could enter 

data to a program that causes it to crash?

age = input("Please enter your age: ")
age = age + 1

Results in a crash as an input is a string and it is trying to do 
a calculation with it
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Data validation
• Data validation routines can ensure that data 

entered is of the right type – for example, an integer 

• Validation cannot ensure that the user has not entered a 
wrong value, or made a spelling mistake in a name

• It can only ensure that the data is reasonable and conforms to 
a set of rules

• What other validation checks could you apply to data 
entered by the user?
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Types of validation check
Check Example

Range check
A number or date is within a sensible/allowed 
range

Type check
Data is of the right type, such as integer, letter
or text

Length check
Text entered is not too long or too short – for 
example, a password is between 8 and 15 
characters

Presence check
Checks that data has been entered, i.e. the 
field has not been left blank

Format check
Checks that the format of, for example, a 
postcode or email address is correct
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Example
• What sort of validation check is made in this algorithm?

postcode = input("Please enter postcode:")
if postcode.length < 6 OR 

postcode.length > 8 then
print("Invalid postcode")

endif

• Rewrite the algorithm so that the program keeps 
asking the user to enter a postcode until the 
entry is valid
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Solution
• You need a WHILE or a REPEAT loop

postcode = input("Please enter postcode:")
while postcode.length < 6 OR 

postcode.length > 8
postcode = input("Invalid postcode –

please re-enter")
endwhile

• How many times will the loop be performed if the 
user enters IP6 4DF?
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Verification
• Validation can only check that the data entered 

is reasonable

• Verification is used to double-check that the data has 
been typed in correctly

• For example, a user setting a new password may be 
asked to type it in twice

• If the two passwords don’t match, they will be asked to enter 
the password again

• This is known as double-entry verification
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Worksheet 2
• Now complete Task 1 on Worksheet 2
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Authentication routines
• Authentication routines are used to make sure a 

person is who they claim to be

• What is a common method 
of online authentication, for 
example when you log in to 
a website with which you 
have previously registered?
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Password routines
• Commonly, you are asked to enter a User ID 

and a password

• Once you have entered the User ID, the website looks 
up your password in a database

• If the user ID cannot be found, an error 
message is displayed

• What happens if you enter the wrong password?
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Entering a password
• You usually get three attempts to get your password, 

and then you will be locked out
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Anticipating misuse
• Why are you often only allowed a finite number of 

tries before being locked out?
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Three tries and you’re out!
• It may be that you have forgotten your password, 

and you need to be given a reminder, so three tries 
is enough for the average user

• BUT a hacker may be trying out dozens of likely 
passwords to try and get the correct one

• There are software programs which will try out every 
combination of letters, numbers and special characters – this 
is known as a brute-force attack

• Use a password of 8 characters or more to make it more 
difficult to hack!
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Worksheet 2
• Now complete Task 2 on Worksheet 2
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Maintainable programs
• Programs need to be maintained

• This will be to improve the code, fix bugs or add new features 
to the program

• It may be carried out by the original programmer or different 
programmers

• It is important that programs are written in a way to 
make them easily maintainable. This includes:

• The use of sub programs (functions and procedures)

• Using appropriate naming conventions

• Indentation

• Commenting



Defensive design

Unit 8 Logic and languages

Using sub programs
• Sub programs include functions and procedures

• Well written sub programs will take inputs (through 
parameters) and if necessary return a value

• They should be written so that they can be reused multiple 
times in the program or by other programs

• The two programs below are for a function that works out the 
area of a circle. Which is more easy to reuse and will help 
create maintainable code?

function circle(radius)
area = 3.14 * radius^2

return area

function circleFive()
area = 3.14 * 5^2

return area
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Using sub programs
• The program on the left takes any sized radius as 

an input

• This means that it is reusable many times in the program and 
in other programs

• This will make a larger program easier to maintain as there 
will be just one function to calculate the area of a circle

function circle(radius)
area = 3.14 * radius^2

return area

function circleFive()
area = 3.14 * 5^2

return area


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Naming conventions
• The two programs below are the same algorithm

• Which is easier to understand? Why?

a = float(input())
b = float(input())
c = float(input())
d = a + b + c
e = d / 3
print(e)

num1 = float(input())
num2 = float(input())
num3 = float(input())
total = num1 + num2 + num3
average = total / 3
print(average)
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Naming conventions
• The two programs below are the same algorithm

• Which is easier to understand? Why?

• It is important to use meaningful names for 
variables, constants, functions and procedures

• This makes code easier to read and understand

a = float(input())
b = float(input())
c = float(input())
d = a + b + c
e = d / 3
print(e)

num1 = float(input())
num2 = float(input())
num3 = float(input())
total = num1 + num2 + num3
average = total / 3
print(average) 
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Indentation
• Look at the following pseudocode:

tables = 12
rows = 12
for i = 1 to tables
for j = 1 to rows
answer = i * j
next j
next i
print(str(i) + "x" + str(j) + " = " + str(answer))

• Why would the use of indentation improve it?

• Why may indentation be essential in some languages?
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Indentation
tables = 12
rows = 12
for i = 1 to tables

for j = 1 to rows
answer = i * j

next j
next i
print(str(i) + "x" + str(j) + " = " + str(answer))

• Why would the use of indentation improve it?
• Indentation makes it possible to easily see which lines of 

code are part of different structures

• Why may indentation be essential in 
some languages?
• Some languages use braces { } to show where structures 

start and end, but some, such as Python use indentation
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Commenting
• Comments in code help other programmers to 

understand your code

• They also help you understand your code when you go back 
to it at a later time

• Which parts of programming code tend to 
be commented?

• Which parts are typically not commented?



Defensive design

Unit 8 Logic and languages

Commenting
• Comments are usually written for:

• Parts of a program/algorithm that are difficult to understand

• At the start of a function or procedure to explain what it does

• Comments usually aren’t written for:

• Every line of code

• To explain parts of code that are obvious

• To explain syntax used in the programming language –
programmers are expected to look up and learn parts of the 
language that they don’t understand
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Plenary
• Work in pairs to explain the following terms and how 

they can improve the design of programs

• Input validation

• Anticipating misuse

• Authentication

• Use of sub programs

• Naming conventions

• Indentation

• Commenting
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Plenary
• Input validation – checking input meets certain rules, e.g. the 

type of data

• Anticipating misuse – preventing too many entries of a 
password to make it harder for hackers to guess

• Authentication – entering data twice or checking from an 
alternative source

• Use of sub programs – creates reusable code where bugs 
can easily be fixed

• Naming conventions – good use of variables and sub 
program names makes programs easier to read

• Indentation – makes programs easier to read

• Commenting – helps programmers understand what a 
program does and how it does it
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