Computer Science Check List

Paper 1: Computer systems

1. Systems Architecture		
1.1.1 Architecture of the CPU		×
Purnose of the CPU:		
rapose of the Cro.		
Understand under Feturezedue optie.		
rectin, now develop four events instructions non-memory.		
Secure breaking down the instruction such as performing calculations or maying data		
Lacute. Canying out the instruction, such as performing calculations of moving data.		
Learn the fold of GFO components.		
Antimited Logic Unit (ALO). Manages mathematical and logical operations.		
Carbos Amallor, factor bas of solution memory for storing frequently used data		
Vacine: A stratet, raser type of vacue memory for scoring nequency used data.		
Registers. Official Storage locations within the Crop, including.		
Themioly Address Register (MDR): Stores data forchood from memory Mamory Data Dadistry (MDR): Stores data forchood from memory		
Mellion y Data Aegister (mDA). Stores data retched norm mellion.		
Program Counter: Keeps track of the next instruction address.		
1 1 2 CPI/ Performance	2	×
1.1.2 OF 0 FERDINANCE		
ractors Anecung Performance.		
Clock Speed, measure in GHZ, impacts now many instructions a CPC can process per second.		
Cache Size: Larger Cache means more data can be stored close to the CPU, reducing Walt times.		<u> </u>
Number of Cores : More cores allow parallel processing of instructions, increasing efficiency.		
1.1.2 Embedded Systems		
1.1.5 Embedded Systems		
Embedded Systems:		<u> </u>
Understand that these are computers integrated into other devices (e.g., washing machines, cars).		<u> </u>
Characteristics: Usually specialized, optimized for specific tasks, and have limited functions compared to general-purpose computers.		U
0 Memory and Staroge		
2. Memory and Storage	_	
1.2.1 Primary Storage (Memory)	✓	X I
RAM vs ROM:		
RAM vs ROM: RAM (Random Access Memory):		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory):		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory:		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD).		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD).		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). 1.2.2 Secondary Storage		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). 1.2.2 Secondary Storage Types of Storage:		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). 1.2.2 Secondary Storage Types of Storage: Optical (e.g., CDs, DVDs):		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). 1.2.2 Secondary Storage Types of Storage: Optical (e.g., CDs, DVDs): Good for long-term storage, cheap, but slower access times and lower capacity.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). 1.2.2 Secondary Storage Types of Storage: Optical (e.g., CDs, DVDs): Good for long-term storage, cheap, but slower access times and lower capacity. Magnetic (e.g., Hard Drives):		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). 1.2.2 Secondary Storage Types of Storage: Optical (e.g., CDs, DVDs): Good for long-term storage, cheap, but slower access times and lower capacity. Magnetic (e.g., Hard Drives): Used for bulk storage, higher capacity, but slower compared to solid-state drives.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). 1.2.2 Secondary Storage Types of Storage: Optical (e.g., CDs, DVDs): Good for long-term storage, cheap, but slower access times and lower capacity. Magnetic (e.g., Hard Drives): Used for bulk storage, higher capacity, but slower compared to solid-state drives. Solid State (e.g., SSDs):		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). 1.2.2 Secondary Storage Types of Storage: Optical (e.g., CDs, DVDs): Good for long-term storage, cheap, but slower access times and lower capacity. Magnetic (e.g., Hard Drives): Used for bulk storage, higher capacity, but slower compared to solid-state drives. Solid State (e.g., SDs): Fast, durable, but more expensive and typically with lower capacity than magnetic storage. Fast, durable, but more expensive and typically with lower capacity than magnetic storage.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). 1.2.2 Secondary Storage Types of Storage: Optical (e.g., CDs, DVDs): Good for long-term storage, cheap, but slower access times and lower capacity. Magnetic (e.g., Hard Drives): Used for bulk storage, higher capacity, but slower compared to solid-state drives. Solid State (e.g., SDS): Fast, durable, but more expensive and typically with lower capacity than magnetic storage. Storage Characteristics:		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). I.2.2 Secondary Storage Types of Storage: Optical (e.g., CDs, DVDs): Good for long-term storage, cheap, but slower access times and lower capacity. Magnetic (e.g., Hard Drives): Used for bulk storage, higher capacity, but slower compared to solid-state drives. Solid State (e.g., SDS); Fast, durable, but more expensive and typically with lower capacity than magnetic storage. Storage Characteristics: Capacity: Total amount of data the device can store. East storage.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). 1.2.2 Secondary Storage Types of Storage: Optical (e.g., CDs, DVDs): Good for long-term storage, cheap, but slower access times and lower capacity. Magnetic (e.g., SSDs): Fast, durable, but more expensive and typically with lower capacity than magnetic storage. Storage Characteristics: Capacity: Total amount of data the device can store. Speed: How quickly data can be read from or written to the device.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). 1.2.2 Secondary Storage Types of Storage: Optical (e.g., CDs, DVDs): Good for long-term storage, cheap, but slower access times and lower capacity. Magnetic (e.g., Hard Drives): Used for bulk storage, higher capacity, but slower compared to solid-state drives. Solid State (e.g., SSDs): Fast, durable, but more expensive and typically with lower capacity than magnetic storage. Storage Characteristics: Capacity: Total amount of data the device can store. Speed: How quickly data can be read from or written to the device. Portability: Ease with which the device can be moved or transported.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). Image: Optical (e.g., CDs, DVDs): Good for long-term storage, cheap, but slower access times and lower capacity. Magnetic (e.g., Hard Drives): Used for bulk storage, higher capacity, but slower compared to solid-state drives. Solid State (e.g., SSDs): Fast, durable, but more expensive and typically with lower capacity than magnetic storage. Storage Characteristics: Capacity: Total amount of data the device can store. Speedt: How wulckly data can be read from or written to the device. Portability: Ease with which the device can be moved or transported. Durability: How well the device withstands physical damage.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). Immediate the process of swapping data between RAM and a hard drive (HDD or SSD). Immediate the process of swapping data between RAM and a hard drive (HDD or SSD). Immediate the process of swapping data between RAM and a hard drive (HDD or SSD). Immediate the process of swapping data between RAM and a hard drive (HDD or SSD). Immediate the process of swapping data between RAM and a hard drive (HDD or SSD). Immediate the storage. Immediate the storage of swapping data between RAM and a hard drive (HDD or SSD). Immediate the storage of swapping data between RAM and a hard drive (HDD or SSD). Immediate the storage of swapping data between RAM and a hard drive (HDD or SSD). Immediate the storage of swapping data between capacity. Magnetic (e.g., SDS): Good for long-term st		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). 1.2.2 Secondary Storage Types of Storage: Optical (e.g., CDs, DVDS): Good for long-term storage, cheap, but slower access times and lower capacity. Magnetic (e.g., Hard Drives): Used for bulk storage, higher capacity, but slower compared to solid-state drives. Solid State (e.g., SSDs): Fast, durable, but more expensive and typically with lower capacity than magnetic storage. Storage Characteristics: Capacity: Total amount of data the device can store. Speed: How quickly data can be read from or written to the device. Portability: Likelihood that the device will continue to function over time. Cost: Expense associated with the device prunit of storage.		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Yirtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). Image: 1.2.2 Secondary Storage Types of Storage: Optical (e.g., CDs, DVDs): Good for long-term storage, cheap, but slower access times and lower capacity. Magnetic (e.g., SDS): Solid State (e.g., SSDs): Fast, durable, but more expensive and typically with lower capacity than magnetic storage. Storage Characteristics: Capacity: Total amount of data the device can store. Speed: How guickly data can be read from or written to the device. Speed: How guickly data can be read from or written to the device. Portability: Likelihood that the device will continue to function over time. Cost: Expense associated with the device per unit of storage.		
RAM vs ROM: RAM [Random Access Memory]: Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). Import of Storage: Types of Storage: Optical (e.g., CDs, DVDs): Good for long-term storage, cheap, but slower access times and lower capacity. Magnetic (e.g., Hard Drives): Used for bulk storage, higher capacity, but slower compared to solid-state drives. Solid State (e.g., SDSD): Fast, durable, but more expensive and typically with lower capacity than magnetic storage. Storage Characteristics: Capacity: Total amount of data the device can store. Speed: How quickly data can be read from or written to the device. Portability: Ease with which the device can store. Speed: How quickly data can be read from or written to function over time. Cost: Expense associated with the device or of storage. </td <td></td> <td></td>		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential for storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand why ROM is essential of at between RAM and a hard drive (HDD or SSD). Interstand the process of swapping data between RAM and a hard drive (HDD or SSD). Interstand the process of swapping data between RAM and a hard drive (HDD or SSD). Interstand the process of swapping data between RAM and a hard drive (HDD or SSD). Interstand the process of swapping data between RAM and a hard drive (HDD or SSD). Interstand the process of swapping data between RAM and a hard drive (HDD or SSD). Interstand the process of swapping data between RAM and a hard drive (HDD or SSD). Interstand the process of swapping data between RAM and a hard drive (HDD or SSD). Interstand the process of swapping data between RAM and a hard drive (HDD or SSD). Interstand the process of swapping data between RAM and a hard drive (HDD or SSD). Interstand the process of swapping data between access times and lower capacity. <t< td=""><td></td><td></td></t<>		
RAM vs ROM: RAM (Random Access Memory): Volatile memory used for temporarily storing data that is actively being worked on. Understand its role in running programs and how it affects multitasking. ROM (Read-Only Memory): Non-volatile memory that contains essential instructions for booting the computer. Understand why ROM is essential to storing the firmware. Virtual Memory: Learn why virtual memory is needed when RAM is insufficient. Understand the process of swapping data between RAM and a hard drive (HDD or SSD). Interview of Storage: Optical (e.g., CDs, DVDs): Constraint of the process of swapping data between RAM and a hard drive (HDD or SSD). Storage: Optical (e.g., CDs, DVDs): Constraint of the process of swapping data between rapped to solid-state graphic storage Optical (e.g., CDs, DVDs): Constraint of the process of swapping data between rapped to solid-state drives. Solid State (e.g., SDsD): Fast, durable, but stower compared to solid-state drives. Solid State (e.g., SDsDs): Solid State (e.g., SDsDs): Fast, durable, but more expensive and typically with lower capacity than magnetic storage. Storage Characteristics: Capacity: Total amount of data the device can be moved or transported. Durability: Ease with which the device can be moved or transported. Durability: Likelihood that the device will continue		

1.2.4 Data Storage and Binary	✓	×
Binary and Hexadecimal Conversion:		
Learn to convert positive denary numbers (0-255) to binary (up to 8 bits) and vice versa.		
Understand binary addition and how overflow errors occur.		
Convert binary to hexadecimal and vice versa.		
Binary Shifts:		
Understand how left and right binary shifts affect the value of binary numbers.		
1.2.5 Data Storage Representation	✓	×
Characters:		
Understand how characters are represented in binary using character sets like ASCII and Unicode .		
Images:		
Learn how images are stored as a series of pixels in binary form.		
Study the impact of color depth and resolution on image file size and quality.		
Understand what metadata is and how it relates to image storage.		

	-	_	_	_	
	-				
1	Sn		11	n	r

Sound: Learn how sound is converted from analog to digital form through sampling. Understand how sample rate, duration, and bit depth affect sound quality and file size.

1.2.6 Compression	✓	×
Types of Compression:		
Lossy Compression: Reduces file size by removing some data, useful for images, audio, and video but with some loss of quality.		
Lossless Compression: Reduces file size without losing any data, used for text or other files where loss cannot be tolerated.		
Understand when and why to use each type of compression.		

3. Computer Networks, Connections, and Protocols		
1.3.1 Networks and Topologies	◄	×
Types of Networks:		
LAN (Local Area Network): Small geographical area, typically within a single building.		
WAN (Wide Area Network): Larger geographical area, connecting multiple LANs, such as the internet.		
Network Performance:		
Factors such as number of connected devices and available bandwidth.		
Network Topologies:		
Star Topology: All devices connected to a central hub; easy to manage but costly.		
Mesh Topology: Every device is connected to every other; highly reliable but complex to install.		

1.3.2 Wired and Wireless Networks	✓	×
Wired (Ethernet) vs Wireless (Wi-Fi, Bluetooth):		
Wired Networks: Generally faster, more secure, and stable but less portable.		
Wireless Networks: More convenient, flexible, and easier to install but subject to interference.		
Encryption:		
Learn how data is encrypted to ensure secure transmission over networks.		
IP and MAC Addressing:		
IP Addressing: Unique identifier for devices on a network, understanding IPv4 vs IPv6.		
MAC Addressing: Physical address assigned to network interfaces.		
Protocols:		
Study common protocols like TCP/IP (basis for internet communication). HTTP/HTTPS (web communication). FTP (file transfer). SMTP (email sending), etc.		

4. Network Security		
1.4.1 Threats to Computer Systems and Networks	✓	×
Forms of Attack:		
Malware: Viruses, worms, trojans—malicious software intended to damage or disrupt systems.		
Social Engineering: Tactics like phishing that exploit human psychology to gain access to sensitive information.		
Brute-Force Attacks: Trying all possible combinations to guess passwords.		
Denial of Service (DoS) Attacks: Flooding a network with traffic to make services unavailable.		
Data Interception and Theft: Unauthorized access to data as it is transmitted.		
SQL Injection: Attacks that manipulate SQL queries to gain unauthorized access to databases.		

1.4.2 Preventing Vulnerabilities	<	×
Prevention Methods:		
Penetration Testing: Simulating attacks to identify vulnerabilities.		
Anti-Malware Software: Protects against malicious software.		
Firewalls: Control incoming and outgoing network traffic based on security rules.		
User Access Levels: Restricting what users can do or access based on their role.		
Passwords and Encryption: Protect data by making it unreadable without the correct key.		
Physical Security: Protecting hardware from physical threats (e.g., locks, security cameras).		

5. Systems Software		
1.5.1 Operating Systems	<	×
Purpose and Functionality:		
User Interface: Allows users to interact with the computer (e.g., GUI, command line).		
Memory Management: Allocates and tracks memory usage by various programs, enabling multitasking.		
Peripheral Management: Manages communication between the CPU and external devices (e.g., keyboards, printers).		
User Management: Controls user access, rights, and security settings.		
File Management: Organizes and tracks files on the computer.		
1.5.2 Utility Software	✓	×
Functions:		
Encryption Software: Protects data by converting it into an unreadable format.		
Defragmentation: Reorganizes data on a disk to improve efficiency.		
Data Compression: Reduces file sizes to save space and speed up transmission.		

6. Ethical, Legal, Cultural, and Environmental Impacts		
1.6.1 Societal Impact	<	×
Digital Technology Impact:		
Understand ethical issues (e.g., privacy concerns, digital divide).		
Study legal issues (e.g., intellectual property, data protection laws).		
Consider cultural impacts (e.g., changes in social interaction).		
Explore environmental concerns (e.g., e-waste, energy consumption).		
Relevant Legislation:		
Data Protection Act 2018: Rules for handling personal data.		
Computer Misuse Act 1990: Laws against unauthorized access to computers.		
Copyright Designs and Patents Act 1988: Protects intellectual property.		
Software Licenses: Differences between open-source and proprietary software.		

Computer Science Check List

Paper 2: Computational thinking, algorithms and programming

7. Algorithms		
2.1.1 Computational Thinking	<	×
Key Principles:	Π	
Abstraction: Simplifying complex systems by focusing on essential details.	Ē	
Decomposition: Breaking down problems into smaller, more manageable parts.		
Algorithmic Thinking: Creating step-by-step solutions to problems.		
2.1.2 Designing, Creating, and Refining Algorithms	✓	×
Algorithm Design:		
Identify inputs, processes, and outputs for problems.		
Use Pseudocode and Flowcharts to represent algorithms.		
Identify common errors and refine algorithms using Trace Tables.		
2.1.3 Searching and Sorting Algorithms	<	×
Search Algorithms:		
Binary Search: Efficiently finds an item in a sorted list.		
Linear Search: Checks each item in a list until the target is found.		
Sorting Algorithms:		
Bubble Sort: Simple comparison-based sorting.	<u> </u>	<u> </u>
Merge Sort: Divides data into smaller lists, sorts them, and merges back.		
Insertion Sort: Builds the final sorted list one item at a time.		
0. Drogramming Fundamentals		
8. Programming Fundamentals		
2.2.1 Programming Constructs		×
Basic Constructs:		
Use of Variables, Constants, Inputs, Outputs, Assignments in programming.		
Control flow using Sequence, Selection (IF statements), Iteration (Loops).		
Understand and use Comparison (==, !=, <, >, etc.) and <i>*Arithmetic (+, -, , /, MOD, Div, etc.)</i> operators.		
2 2 2 Data Types	<	×
Data Tynes:		
Learn to use Integer Real Roolean Character String		
Understand Casting: Temporarily converting one data type to another when necessary.		
2.2.3 Additional Programming Techniques	✓	×
String Manipulation: Concatenation, slicing, and other operations.		
File Handling:		
Open, Read, Write, and Close files within programs.		
Data Structures:		
Use of Arrays (1D and 2D) to store multiple values.		
Use of Records to store structured data.		
SQL (Structured Query Language):		
Learn to perform basic operations like SELECT, FROM, WHERE in SQL.		
Sub-programs:		
Understand and use Functions and Procedures to create modular code.		
Learn about local and global variables, passing arrays in functions/procedures.		
Random Number Generation:		
Implement and use random numbers in programs.		
9. Producing Robust Programs		
2.3.1 Defensive Design	₹	×
Anticipating Misuse: Design programs to handle unexpected input or errors gracefully.		
Input Validation: Ensure inputs are within expected parameters.		
Maintainability:	<u> </u>	
Use of Sub-programs for modular code.	<u> </u>	
Naming Conventions: Clear and descriptive names for variables and functions.		
Indentation: Property format code for readability.		
Commenung, Explain complex parts of the code for future reference.		

2.3.2 Testing	<	×
Types of Testing:		
Iterative Testing: Test during development.		
Final/Terminal Testing: Test after development is complete.		
Test Data:		
Normal Data: Typical input that should be accepted.		
Boundary Data: Edge cases that test limits.		
Invalid Data: Incorrect input that should be rejected.		
Error Identification:		
Syntax Errors: Grammatical mistakes in code that prevent it from running.		
Logic Errors: Code runs but produces incorrect results.		

10. Boolean Logic			
2.4.1 Boolean Logic	✓	×	
Logic Gates:			
Learn the function and symbols for AND, OR, NOT gates.			
Create and interpret Truth Tables.			
Understand how to combine multiple gates in Logic Diagrams.			

11. Programming Languages and IDEs		
2.5.1 Programming Languages	✓	×
High-level vs Low-level Languages:		
High-level: Easier to write, read, and maintain (e.g., Python, Java).		
Low-level: More control over hardware, but harder to use (e.g., Assembly language).		
Translators:		
Understand the need for Compilers (translate entire program before running) vs Interpreters (translate line-by-line).		
2.5.2 Integrated Development Environment (IDE)	✓	×
IDE Tools:		
Learn the tools available in an IDE such as Code Editors, Error Diagnostics, Run-time Environment, Translators.		
Practice using these tools to write, test, and debug programs efficiently.		